CHINA·77779193永利(集团)有限公司-Official website

学术报告

Matrices with Few Nonzero Principal Minors-杜现昆 教授 (吉林大学, 长春)

题目:Matrices with Few Nonzero Principal Minors

报告人:杜现昆 教授  (吉林大学, 长春)

时间:2017年5月17日(周三)下午3:05--4:05

地点:首都师范大学本部教学2楼611教室

摘要:For an n by n complex matrix A, let V_A = {(d_1, … ,d_n) | (/diag(d_1, …,d_n)A)^n=0}.

We say that A is quasi-D-nilpotent if dim V_A=n-1 as an algebraic variety.  It is proved that a quasi-D-nilpotent matrix has very few nonzero principal minors. We determine irreducible quasi-D-nilpotent matrices and the Frobenius normal forms of  quasi-D-nilpotent matrices with respect to permutation similarity when V_A is the set of zeros of a homogeneous polynomial of degree at most 2. This is a joint with Yan Tian and Yueyue Li.

 

欢迎全体师生积极参加!