CHINA·77779193永利(集团)有限公司-Official website

学术报告

Approximation and Orthogonality in Sobolev Spaces-徐源 教授 (Prof Yuan Xu, University of Oregon)

报告题目:Approximation and Orthogonality in Sobolev Spaces

报告人: 徐源 教授 (Prof Yuan Xu, University of Oregon)

报告时间:9月1日(星期五)下午3:00-4:00

报告地点:首师大校本部新教二楼511教室

 

 

 

摘要:The best approximation polynomials in a $L^2$ space are the partial sums of the Fourier orthogonal expansions in the same space. This can be extended to a Sobolev space, for which the orthogonality is defined with respect to an inner product that contains derivatives and approximation holds for functions and their derivatives simultaneously. We explain recent results in this talk, starting with approximation via Sobolev orthogonal polynomials on an interval with the Jacobi weight and continuing to results on the unit ball and on a triangle.

 

报告人简介:徐源教授主要从事分析方向如逼近论,调和分析,数值分析,特殊函数等的研究,研究兴趣关注点为多元正交多项式,求积公式,多元逼近等。他是多个学术期刊如Constr. Approx., J. Approx., Numer. Algor., Proc. Amer. Math. Soc.的编委。