学术报告
系列报告-刘继涛 (北京工业大学)/王艳青(郑州轻工业学院)/郑孝信(北京航空航天大学)/任晓霞(北京应用物理和计算数学研究所)/李明杰(中央民族大学)/叶嵎林(河南大学)
1、题目:On boundary regularity criteria for the 6D steady Navier-Stokes equations and its applications
报告人:刘继涛 (北京工业大学)
时间:2017年11月25日(周六)下午2:00-2:30
摘要: In this talk, we will present some work on the boundary regularity criteria for the 6D steady Navier-Stokes equations, including its motivation, sketch of proof and its applications to other models in fluid mechanics.
2、题目:New -regularity criteria and application to the box dimension of the singular set in the 3D Navier-Stokes equations
报告人:王艳青(郑州轻工业学院)
时间:2017年11月25日(周六)下午2:30-3:00
摘要:In this talk, we are concerned with the regularity of suitable weak solutions to the 3D Navier-Stokes equations. First, we present some recent progress involving the upper box-counting dimension of the set of possible singular points in space-time of suitable weak solutions to the 3D Navier-Stokes system. Second, we shall turn our attention to new -regularity criteria of suitable weak solutions in the 3D Navier-Stokes equations.
3、题目:The forward self-similar solutions of the fractional Navier-Stokes equations
报告人:郑孝信 (北京航空航天大学)
时间:2017年11月25日(周六)下午3:10-3:40
摘要: We consider the forward self-similar solutions to the fractional Navier-Stokes equations. By making use of the blow-up argument, we construct a global-time forward self-similar solutions to the fractional Navier-Stokes equations for arbitrarily large self-similar initial data. In particular, we give an alternative proof of the result established by Jia and Sverak [ Invent. Math. 196(2014), 233-265].
4、题目:Local well-posedness for the surface wave equation with low regularity
报告人:任晓霞(北京应用物理和计算数学研究所)
时间:2017年11月25日(周六)下午3:40-4:10
摘要:We prove the local well-posedness of the surface wave equation in low regularity Sobolev spaces by energy method. The key point is that we construct a new iteration scheme on a known domain and give a Stokes estimate depend on low regularity boundary.
5、题目:特征分解及其在超音速流体中的应用
报告人:李明杰(中央民族大学)
时间:2017年11月25日(周六)下午4:20-5:00
摘要:我们首先简要介绍可压缩欧拉方程中四个疏散波相互作用的二维黎曼问题。然后推导主要的分析工具:特征分解。最后介绍特征分解在简单波区域的应用,以及未解决的问题
6、题目:Global strong solutions to the Cauchy problem of 1D compressible MHD equations with large initial data and vacuum
报告人:叶嵎林(河南大学)
时间:2017年11月25日(周六)下午5:00-5:20
摘要: In this talk, we consider the Cauchy problem of the 1D compressible isentropic MHD equations with resistivity or non-resistivity. We establish the global well-posedness of the strong solutions for both the two cases, and the non-resistivity limit is also considered when the resistivity tends to zero. Here, the initial data can be large and contain vacuum.
地点:首师大校本部新教二楼727
欢迎全体师生积极参加!