CHINA·77779193永利(集团)有限公司-Official website

学术报告

Convergence analysis of finite element method for natural convection MHD-毛士鹏 研究员 (中科院)

题目: Convergence analysis of finite element method for natural convection MHD

报告人:毛士鹏 研究员 (中科院)

报告时间:11月27日(周五)下午19:00-20:00

报告地点:线上腾讯会议(会议号:194 939 379)

Abstract:We propose and study a numerical scheme for the time-dependent magnetohydrodynamic problem with low magnetic Reynolds number coupled heat equation through the well-known Boussinesq approximation, in which the Joule effect and Viscous heaing are taken into account. We first show the uniqueness of solution for the continuous model under some regularity assumptions on the weak solution. Then a fully discrete Euler semi- implicit scheme based on the mixed finite element method for the model is developed, in which continuous elements are used to approximate the fluid equations, thermally equation and electric potential poisson equation. The proposed discrete scheme requires only solving a linear system per time step. With a proper regularity assumption on the exact solution, the unconditionally optimal convergence in H1-norm of the fully discrete finite element solution for each unknown variable without any restriction on the time-step size is derived. Finally, several numerical examples are performed to demonstrate both accuracy and efficiency of our proposed scheme.

报告人简介:毛士鹏,中国科学院数学与系统科学研究院研究员, 博士生导师。2008年博士毕业于中国科学院数学与系统科学研究院计算数学所,2008-2012分别在法国的INRIA以及在瑞士苏黎世高工(ETH Zurich)做博士后和研究助理,曾在法国的波城大学,INRIA, 瓦朗谢纳大学,香港理工大学以及澳大利亚昆士兰科技大学等做访问学者和客座教授。主要研究兴趣为有限元方法及其应用,自适应算法, 计算流体力学和磁流体力学等。在 Math. Comp., Numer. Math.、SIAM. J. Numer. Math., SIAM J.Sci.Comput., Math. Model Meth. Appl. Sci. (M3AS)等SCI杂志上发表论文60余篇

联系人:赵旭鹰