学术报告
Determining the number of change-points via high-dimensional cross-validation-李忠华副(南开大学 统计与数据科学学院)
“2020首师大青年统计论坛”系列报告
题目:Determining the number of change-points via high-dimensional cross-validation
报告人:李忠华副教授(南开大学 统计与数据科学学院)
时间:2020年12月3日(星期四)下午20:00-21:00
地点:线上腾讯会议(会议号:766 943 031)
Abstract : In order to estimate the number of change-points in high dimension, we develop a high-dimensional data-driven cross-validation selection criterion. Firstly, we define a goodness-of-fit measure by incorporating the dimensionality into the quadratic prediction error function. Secondly, the high-dimensional cross-validation (hCV) procedure is applied based on an order-preserved sample-splitting strategy. Simulation studies show that the proposed hCV criterion has more robust performance compared with a high-dimensional SIC (hSIC) criterion tailored for the high-dimensional change-point problem. The selection property is also established under some mild conditions.
报告人简介:李忠华,南开大学统计与数据科学学院副教授。研究方向为统计质量控制、变点、质量工程、高维统计等。合作出版专著1本,发表学术论文40余篇。现任中国优选法统筹法与经济数学研究会工业工程分会常务理事、中国现场统计研究会高维数据统计分会理事、中国现场统计研究会数据科学与人工智能分会理事、国际质量工程期刊Quality Engineering编委、美国Mathematical Reviews评论员等。。
联系人:周洁、胡涛
举办单位:77779193永利官网统计系 北京应用统计学会
交叉科学研究院
欢迎全体师生积极参加!