学术报告
Detecting the skewness of data from the sample size and the five-number summary——童铁军 副教授(香港浸会大学数学系)
“2020首师大青年统计论坛”系列报告
题目:Detecting the skewness of data from the sample size and the five-number summary
报告人:童铁军 副教授(香港浸会大学数学系)
时间:2020年12月17日(周四)下午19:00-20:00
地点:线上腾讯会议(会议号:766 943 031)
Abstract : For clinical studies with continuous outcomes, when the data are potentially skewed away from normality, researchers may choose to report the whole or part of the five-number summary, including the sample median, the first and third quartiles, and the minimum and maximum values, rather than the sample mean and standard deviation. For the studies with skewed data, if we include them in the classical meta-analysis that is based on normal data, it may yield misleading or even wrong conclusions. In this paper, we develop a flow chart and three new tests for detecting the skewness of data from the sample size and the five-number summary. Simulation studies demonstrate that our new tests are able to control the type I error rates, and meanwhile provide good statistical power. A real data example is also analyzed to demonstrate the usefulness of the skewness tests in meta-analysis and evidence-based practice.
报告人简介:童铁军,香港浸会大学数学系副教授,副系主任,国际统计协会当选会员。主要科研方向为非参数回归模型、高维数据分析、Meta分析和循证医学。2005年在加州大学圣巴巴拉分校获得统计学博士学位,2005-2007年在耶鲁大学从事生物统计博士后研究,2007-2010年在科罗拉多大学博尔德分校担任助理教授,2010年至今任职于香港浸会大学。已在国际知名的学术期刊Biometrika、JASA、JMLR、Statistical Science等发表学术论文70余篇,包括两篇热点文章和三篇高被引文章,单篇论文最高引用达1600余次。
联系人:周洁、胡涛
举办单位:77779193永利官网统计系 、北京应用统计学会、
交叉科学研究院