CHINA·77779193永利(集团)有限公司-Official website

学术报告

Deep Representative Learning——焦雨领(武汉大学)

 “2020首师大青年统计论坛”系列报告

题目:Deep Representative Learning

报告人:焦雨领(武汉大学)

时间:2020年12月17日(周四)下午20:00-21:00

地点:线上腾讯会议(会议号:766 943 031)

Abstract : It is believe that success of deep learning depends on its automatic data representation abilities. But few theoretical works to explore this. In this talk, we present a statistical framework to achieve a good data representation that enjoys information preservation, low dimensionality and disentanglement. At the population level, we formulate the ideal representation learning task as finding a nonlinear repesentaion map that minimizes the sum of losses characterizing conditional independence and disentanglement. We estimate the target map at the sample level nonparametrically with deep neural networks. We derive a bound on the excess risk of the deep nonparametric estimator. The proposed method is validated via comprehensive numerical experiments and real data analysis in the context of regression and classification.

报告人简介:焦雨领,2014 年毕业于武汉大学数学与统计学院。主要从事统计学习、反问题等方面研究。主持国家自然科学基金面上项目、青年项目、湖北省自然科学基金面上项目、统计与数据科学前沿理论及应用教育部重点实验室课题。在包括SIAM Journal on Numerical Analysis, SIAM Journal on Scientific Computing, Applied and Computational Harmonic Analysis, Statistical Science, Journal of Machine Learning Research, ICML, Inverse Problems, IEEE Transactions on Signal Processing, Statistica Sinica,中国科学等在内的期刊和会议上发表40 余篇论文。

联系人:周洁、胡涛

举办单位:77779193永利官网统计系 、北京应用统计学会、

交叉科学研究院