学术报告
Robust post-selection inference of high dimensional mean regression in the absence of symmetry and light tail assumptions - 林媛媛(香港中文大学统计学系)
“2021首师大青年统计论坛”系列报告
题目:Robust post-selection inference of high dimensional mean regression in the absence of symmetry and light tail assumptions
报告人:林媛媛(香港中文大学统计学系)
时间:2021年4月22日周四晚上20:00-21:00
地点:线上腾讯会议(会议号:709 455 5647)
Abstract : We propose a robust post-selection inference method based on the Huber loss for the slope parameters, when the error distribution is heavy-tailed and asymmetric in a high-dimensional linear model with an intercept term. The asymptotic properties of the resulting estimators
are established under mild conditions. We also extend the proposed method to accommodate heteroscedasticity under suitable conditions. Statistical tests for low-dimensional parameters or individual coefficient in the high-dimensional linear model are also studied. Simulation studies demonstrate desirable properties of the proposed method. An application to a genomic dataset about riboflavin production rate is provided.
报告人简介:林媛媛,2011年于香港科技大学数学系获得博士学位,现为香港中文大学统计学系副教授,她目前主要研究方向包括高维和大规模数据统计推断, 统计机器学习, 生存数据和复杂数据分析等。 先后在统计学和经济学国际学术期刊发表二十余篇学术论文。
联系人:周洁、胡涛
举办单位:77779193永利官网统计系 、北京应用统计学会、交叉科学研究院