CHINA·77779193永利(集团)有限公司-Official website

学术报告

Automorphisms of the Boutet de Monvel algebra

CHINA·77779193永利(集团)有限公司-Official website

动力系统讨论班    

题目: Automorphisms of the Boutet de Monvel algebra    

报告人: Ryszard NEST教授(哥本哈根大学)      

摘要:In a remarkable work, Duistermaat and Singer in 1976 studied the algebras of all classical pseudodifferential operators on smooth (boundaryless) manifolds. They gave a description of order preserving algebra isomorphism between  the algebras of classical pseudodifferential operators of two manifolds. The subject of this talk is the generalisation of their results to manifolds with boundary. The role of the algebra of pseudodifferential operators that we are interested in is the Boutet de Monvel algebra.      

The main fact of life about manifold with boundary is that vector fields do not define global flows and the "boundary conditions" are a way of dealing with this problem. The Boutet de Monvel algebra corresponds to the choice of local boundary conditions and is effectively, a non-commutative completion of the manifold. One can think of  it as a parametrised version of the classical Toeplitz algebra as a completion of the half-space.     

What appears in the study of automorphisms are Fourier integraloperators and we will try to explain their appearance - both in boundaryless and boundary case. as it turns out, the non-trivial boundary case introduces both some complications but also some simplifications of the analysis involved, Once this is done, the analysis that we need reduces to a high degree to relatively classical results about automorphisms and homology of the Toeplitz algebra and some basic facts from K-theory.     

This is a joint work in progress with Elmar Schrohe.      

报告时间:2024年12月13日(周五)上午10:00-11:00      

报告地点:教二楼608

联系人:孙善忠