学术报告
Gromov-Hausdorff limits of Kahler manifolds with bisectional curvature I,刘钢 教授(University of California, Berkeley)
作者:
时间: 2016-08-05
阅读:
题目:Gromov-Hausdorff limits of Kahler manifolds with bisectional curvature I
报告人:刘钢 教授(University of California, Berkeley)
摘要:Let (M_i^n, p_i) be a sequence of complete Kahler manifolds with bisectional curvature lower bound -1 and vol(B(p_i, 1))/geq v>0. Let (X, p) be the Gromov-Hausdorff limit. We prove that (X, p) is homeomorphic to a normal irreducible complex analytic variety. As a corollary, we prove that if M^2 is a complete Kahler surface with positive bisectional curvature and maximal volume growth, then M is simply connected.
时间: 8月5日(周五)16:00-17:00
地点:首都师大北一教学楼405
欢迎全体师生积极参加!