CHINA·77779193永利(集团)有限公司-Official website

学术报告

Gromov-Hausdorff limits of Kahler manifolds with bisectional curvature I,刘钢 教授(University of California, Berkeley)

题目:Gromov-Hausdorff limits of Kahler manifolds with bisectional curvature I

报告人:刘钢 教授(University of California, Berkeley)

摘要:Let (M_i^n, p_i) be a sequence of complete Kahler manifolds with bisectional curvature lower bound -1 and vol(B(p_i, 1))/geq v>0. Let (X, p) be the Gromov-Hausdorff limit. We prove that (X, p) is homeomorphic to a normal irreducible complex analytic variety. As a corollary, we prove that if M^2 is a complete Kahler surface with positive bisectional curvature and maximal volume growth, then M is simply connected.

时间:  8月5日(周五)16:00-17:00

地点:首都师大北一教学楼405

欢迎全体师生积极参加!