学术报告
Tunnel effect for semi-classical random walk-Prof. Hérau Frédéric (Laboratoire de Mathématiques Jean Leray Universite de Mantes)
作者:
时间: 2016-10-20
阅读:
题目:Tunnel effect for semi-classical random walk
报告人:Prof. Hérau Frédéric (Laboratoire de Mathématiques Jean Leray Universite de Mantes)
摘要:We study a semiclassical random walk with respect to a probability measure with a nite number n0 of wells. We show that the associated operator has exactly n0 exponentially close to 1 eigenvalues (in the semiclassical sense), and that the other are O(h) away from 1. We also give an asymptotic of these small eigenvalues. The key ingredient in our approach is a general factorization result of pseudodierential operators, which allows us to use recent results on the Witten Laplacian.
时间:10月20日(周四)下午 14:00-15:00
地点:首都师范大学本部区教四楼412教室
欢迎全体师生积极参加!
- 上一篇 :Boundary blow-up solutions to the Monge-Ampere equation-杜一宏教授(澳大利亚新英格兰大学)
- 下一篇 :Sharp Pitt’s inequality and logarithmic uncertainty principle for two-parametric generalized Fourier transform-Professor Ivanov Valerii Ivanovich (Mathematical and Mechanical Faculty of Tula State University, Russia)