学术报告
Community detection in sparse latent space models-高凤楠(复旦大学)
题目:Community detection in sparse latent space models
报告人:高凤楠(复旦大学)
Abstract :
We show that a simple community detection algorithm originated from stochastic blockmodel literature achieves consistency, and even optimality, for a broad and flexible class of sparse latent space models. The class of models includes latent eigenmodels. The community detection algorithm is based on spectral clustering followed by local refinement via normalized edge counting. The algorithm is easy to implement and attains high accuracy with a low computational budget. The proof of its optimality depends on a neat equivalence between likelihood ratio test and edge counting in a simple vs.~simple hypothesis testing problem that underpins the refinement step, which could be of independent interest.
This is joint work with Zongmin Ma and Hongsong Yuan.
个人简介:
高凤楠于2012年至2016年师从Aad van der Vaart攻读博士学位。2016年8月,他作为副研究员加入复旦大学大数据学院及上海数学中心,主要研究领域包括网络科学中的高维统计推断和大数据分析、非参数贝叶斯统计、复杂网络中的概率方法、社交网络中的建模与大数据分析等。主要成果发表于Electronic Journal of Statistics和Stochastic Processes and Their Applications。已经受邀在阿姆斯特丹、上海、多伦多、英国剑桥、荷兰埃因霍芬、伦敦、新泽西、新加坡、台北、北京等多地做学术报告。
时间:2020年11月5日(周四)20:00-21:00
地点:线上腾讯会议(会议号:766 943 031)
联系人:周洁,胡涛
欢迎全体师生积极参加!