CHINA·77779193永利(集团)有限公司-Official website

学术报告

Trace finite element methods for partial differential equations on evolving surfaces--许现民 副研究员(中国科学院)

题目: Trace finite element methods for partial differential equations on evolving surfaces

报告人:许现民 副研究员(中国科学院)

时间:2020年12月16日(周三) 下午15:50-16:50

地点:腾讯会议(会议号:906 278 365)

Abstract : Many physical processes and biological phenomena could be modeled by partial differential equations on surfaces or manifolds. Recently, the method to solve surface PDEs has arisen much interests in the community of numerical analysis. In this talk, I will introduce some trace finite element methods for partial differential equations on evolving surfaces. The finite element space is a trace of a standard finite element space defined in the neighboring region of the surface. To deal with the evolving surface, an extension of the solution is done by a fast marching method or a stabilization technique. The methods are based on a Eulerian framework and easily treat shape and topology changes of the surface. Numerical experiments and error estimates are given to show the optimal convergence of the methods. Recently, we also apply the method to the Allen-Cahn equation on evolving surfaces.

专家简介:许现民,中科院数学与系统科学研究院副研究员,博士生导师。博士毕业于北京大学,曾先后赴牛津大学、香港科技大学和德国亚琛工业大学进行长期学术访问或博士后研究。主要研究兴趣是软物质科学中一些复杂多尺度问题的可计算建模和数值方法,研究问题包括两相流和非线性弹性材料等。迄今在Arch. Rational Mech. Anal., SIAM J. Numer. Anal., J. Fluid Mech., J. Comput. Phys. 等高水平期刊上发表文章三十余篇。

联系人:赵旭鹰

欢迎全体师生积极参加!