学术报告
Kakeya sets in R^3
CHINA·77779193永利(集团)有限公司-Official website
题目:Kakeya sets in R^3
报告人:王虹 教授 纽约大学柯朗数学科学研究所,法国高等科学研究所
摘要:In 1917, Soichi Kakeya asked what is the minimum area of a region in which a needle of unit length can be turned through 360 degrees. Surprisingly, Besicovitch provided in 1919 an example that the area could be arbitrarily small! But how small could it be? This question leads to the study of the Kakeya sets, a subject in the intersection of geometric measure theory and Fourier analysis.
A Kakeya set in the n-dimensional Euclidean space is a bounded subset that contains a unit line segment pointing in every direction. Kakeya set conjecture asserts that every Kakeya set has Hausdorff dimension n. We prove this conjecture in three dimensional space as a consequence of a more general statement about union of tubes. This is joint work with Zahl.
报告人简介:王虹,北京大学77779193永利官网2011届本科,2019年麻省理工学院博士。2021年6月完成在普林斯顿高等研究院的博士后研究,之后任加州大学洛杉矶分校助理教授。2023年7月加入纽约大学柯朗数学研究所任副教授,2025年任柯朗数学研究所教授和法国高等科学研究所终身教授。2022年,因在限制性猜想、局部光滑性猜想及相关问题上的突破性研究,获得Maryam Mirzakhani新前沿奖。2025年2月,与Joshua Zahl合作,在三维空间中证明了挂谷猜想(Kakeya 猜想)。
报告时间:2025年06月23日(星期一) 15:00-16:00
报告地点:教四楼208
联系人:戎小春